Task Domains¶
Here, we describe the various task domains available in DiscoBench. We expect this to continue to grow as our benchmark scales.
BayesianOptimisation¶
The agent must maximise randomly sampled variables using Bayesian Optimisation.
Modules¶
acq_fn, acq_optimizer, domain, next_queries, surrogate, surrogate_optimizer
Datasets¶
Ackley1d, Ackley2d, Branin2d, Bukin2d, Cosine8d, DropWave2d, EggHolder2d, Griewank5d, Hartmann6d, HolderTable2d, Levy6d
BrainSpeechDetection¶
The agent is tasked with training a speech detector based on brain MEG signals.
Modules¶
loss, networks, optim
Datasets¶
LibriBrainSherlock1, LibriBrainSherlock2, LibriBrainSherlock3, LibriBrainSherlock4, LibriBrainSherlock5, LibriBrainSherlock6, LibriBrainSherlock7
ComputerVisionClassification¶
The agent must train an image classifier for a range of different image classification datasets, of varying difficulty.
Modules¶
loss, networks, optim, preprocess
Datasets¶
CIFAR10, CIFAR10C, CIFAR10LT, CIFAR100, FashionMNIST, MNIST, OxfordFlowers, StanfordCars, TinyImageNet
ContinualLearning¶
The agent must train a model on different non-stationary continual learning tasks.
Modules¶
optim, regularizer, replay, sampler, scheduler
Datasets¶
PermutedMNIST, SplitCIFAR100, TinyImageNetSplit
GreenhouseGasPrediction¶
The agent must train a model to predict the changing concentrations of different greenhouse gases in the atmosphere.
Modules¶
data_processing, model
Datasets¶
CH4, CO2, N2O, SF6
LanguageModelling¶
The agent must pre-train a language model on different small-scale pretraining datasets.
Modules¶
loss, networks, optimizer
Datasets¶
LMFineWeb, OPCFineWebCode, OPCFineWebMath, TinyStories
ModelUnlearning¶
The agent must unlearn certain behaviours of a pretrained model while maintaining others.
Modules¶
loss
Datasets¶
muse, tofu, wmdp_cyber
Models¶
gemma-7b-it, Llama-2-7b-chat-hf, Llama-2-7b-hf, Llama-2-13b-hf, Llama-3.1-8b-Instruct, Llama-3.2-1B-Instruct, Llama-3.2-3B-Instruct, phi-1_5, Phi-3.5-mini-instruct, Qwen2.5-1.5B-Instruct, Qwen2.5-3B-Instruct, Qwen-2.5-7B-Instruct
Installation¶
Please note, after installing the ModelUnlearning requirements.txt, you must install flash-attn. Please use:
pip install flash-attn==2.6.3 --no-build-isolation
OffPolicyRL¶
The agent must train a value-based RL agent in game environments.
Modules¶
config, networks, optim, policy, q_update, rb, train
Datasets¶
MinAtar/Asterix, MinAtar/Breakout, MinAtar/Freewar, MinAtar/SpaceInvaders
OnPolicyRL¶
The agent must train an on-policy RL agent in game and robotics environments.
Modules¶
config, networks, optim, train
Datasets¶
Brax/Ant, Brax/HalfCheetag, Brax/Hopper, Brax/Humanoid, Brax/Pusher, Brax/Reacher, Brax/Walker2D, Craftax/Craftax, Craftax/Craftax-Classic, MinAtar/Asterix, MinAtar/Breakout, MinAtar/Freewar, MinAtar/SpaceInvaders
UnsupervisedEnvironmentDesign¶
The agent must develop level sampling methods for an on-policy RL agent.
Modules¶
sample_levels, train_step, variable_config
Datasets¶
Kinetix/Large, Kinetix/Medium, Kinetix/Small, Minigrid